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In this paper we present an analytical solution to the problem of sound radiation
from semi-infinite coaxial cylinders, as a model for rearward noise emission by
aeroengines. The cylinders carry uniform subsonic flows, whose Mach numbers may
differ from each other and from that of the external flow. The incident field takes the
form of a downstream-going acoustic mode in either the outer cylinder (the bypass
flow) or the inner cylinder (the jet). The key geometrical ingredient of our problem
is that the two open ends are staggered by a finite axial distance, so that the inner
cylinder can be either buried upstream inside the outer cylinder, or can protrude
downstream beyond the end of the outer cylinder (sometimes called the ‘half-cowl’
configuration). The solution is found by solving a matrix Wiener–Hopf equation,
which involves the factorization of a certain matrix K̂ in the form K̂−K̂ = K̂+,
with K̂± analytic, invertible and with algebraic behaviour at infinity in the upper
and lower halves of the complex Fourier plane respectively. It turns out that the
method of solution is different for the buried and protruding cases. In the buried
case the well-known pole removal technique can be applied to a certain meromorphic
function (denoted k11), but in the protruding case the corresponding function k22 is
no longer meromorphic. Progress is made, however, by using a Padé representation of
k22 to yield a meromorphic problem which can then be solved using the pole removal
technique as before. A range of results is presented, for both buried and protruding
systems and with and without mean flow, and it becomes clear that the stagger of the
two open ends can have a very significant effect on the far-field noise. We also obtain
reasonable agreement between our predictions and some experimental results. One
particular noise mechanism we identify in the presence of mean shear is the way in
which a Kelvin–Helmholtz instability mode launched from the upstream trailing edge
can be scattered into sound by its interaction with the downstream edge, provided
that the separation between the edges is sufficiently large in a way which we identify.

1. Introduction
Noise emission by large aeroengines is an issue of continued practical interest,

and many complex issues concerned with the generation of noise and the way in
which it propagates to an observer on the ground or in the aircraft cabin still require
considerable attention. One such issue concerns the way in which noise reaches the
far field through the rearward arc; noise generated by the fan can propagate along
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Figure 1. The model problem, here in the protruding case d > 0 in which the inner pipe
protrudes beyond the outer pipe.

the bypass duct, while noise from the aeroengine core propagates through the jet
pipe. In both cases the sound is scattered by the trailing edges of the outer cowling
and jet nozzle, and is refracted by the non-uniform flow resulting from the mixing of
the jet and bypass streams and the atmosphere. The resulting radiation pattern in the
far field can be very complex.

In the past a range of simplified model problems have been solved which are relevant
to the exhaust noise issue. One of the earliest works was due to Levine & Schwinger
(1948), who considered radiation from a semi-infinite cylindrical pipe containing an
incident plane wave but with zero mean flow. This was extended to higher-order duct
modes and to non-zero mean flow for a leading-edge configuration by Homicz &
Lordi (1975). A very important solution was derived by Munt, who considered a semi-
infinite hollow cylinder in which the outer and inner uniform mean flows have different
Mach numbers (so that the mean flow possesses a vortex sheet), and derived analytical
expressions for both the far-field radiation (Munt 1977) and the reflected duct modes
(Munt 1990). A low-frequency analysis of Munt’s problem has been considered by
Cargill (1982a , b) and Rienstra (1983), and a high-frequency analysis by Cargill
(1982c). The case of an annular semi-infinite cylinder with equal external, bypass
and jet mean-flow Mach numbers was considered by Rienstra (1984); note that even
when the mean-flow Mach numbers are equal, scattering of sound still causes unsteady
vorticity to be shed from the trailing edges. More recently Gabard & Astley (2006)
have extended the Munt solution by including an infinite centrebody. The approach
used by all these authors has been to apply the scalar Wiener–Hopf technique (see
Noble 1988). This technique allows two unknown functions that are analytic over
semi-infinite intervals to be found, effectively the unsteady pressure distribution on
the cylinder wall and a corresponding quantity (such as the radial velocity in the
fluid) over the semi-infinite extension of the cylinders in the axial direction.

Although the model solutions described in the previous paragraph have proved
illuminating, one drawback is that they do not allow for proper representation of
a very important feature of the real system, namely that the jet nozzle protrudes a
finite distance beyond the end of the nacelle, or in certain configurations is buried
a finite distance upstream. Our representation of this situation is shown in figure 1,
in which the axial stagger of the two open ends, d , is finite and either positive (the
protruding, or sometimes called the ‘half-cowl’, case as shown in figure 1) or negative
(the buried case). In the buried nozzle case Taylor, Crighton & Cargill (1993) derived
an approximate solution by splitting the problem up into two semi-infinite geometries
which are then solved separately, again by the scalar Wiener–Hopf technique.
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However, our aim in this paper is to derive exact solutions, and in order to do this
we will need to apply matrix Wiener–Hopf techniques.

In scalar Wiener–Hopf problems one usually makes a multiplicative factorization of
a single scalar function. As we will see, the solution of the problem represented in fig-
ure 1 results in two coupled Wiener–Hopf problems, which we will write in the form of
a matrix equation. The issue then is the multiplicative factorization of the 2×2 matrix
K̂ in the form K̂−K̂ = K̂+, with K̂+ and K̂− analytic, invertible and with algebraic
behaviour at infinity in the upper and lower halves of the complex plane respectively.
Unlike the scalar case, there is no general method for completing this factorization,
but a number of different techniques are available which work for particular forms of

K̂. In one such class of problems, one proceeds by subtracting an infinite series of (un-
known) residue contributions in one half-plane from a certain meromorphic function

formed from elements of K̂. This leads to an infinite algebraic system for the unknown

elements, and the factorization of K̂ is completed by numerical solution of this
system. In various guises this approach is the so-called ‘weak factorization method’ of
Idemen (1979) or ‘pole removal method’ of Abrahams (1987a), and many applications
of this technique have been made: for instance, by Jones (1986), Abrahams (1987b)
and Abrahams & Wickham (1988) for the problem of scattering by multiple plane
barriers, and recently by Demir & Rienstra (2006) for the problem of radiation from a
coaxial cylinder with infinite centrebody in which half of the centre-body has acoustic
lining. As we will see, the pole removal method can be applied to the problem shown
in figure 1 when d < 0. In parallel with our current work, Demir & Rienstra (2007)
have studied the buried problem using the weak factorization method. Our work, for
both the buried nozzle and the protruding nozzle, is reported in Veitch & Peake (2007).

For the protruding case d > 0 our present problem is not of the form for which
the pole removal technique can be applied. However, for a related problem, namely
scattering by a pair of staggered plates, Abrahams & Wickham (1988, 1990b) have
constructed the matrix factorization in terms of the solution of coupled integral
equations, which can then be solved iteratively. We could adopt this latter approach
here, but instead we prefer to pursue the philosophy developed by Abrahams (1997,
2000), whose idea here is to use Padé approximants (see Baker & Graves-Morris
1996) to approximate a certain complex function (which possesses branch cuts) by a
rational function (which is necessarily meromorphic). This has the effect of converting
the problem into one in which the pole removal technique described in the previous
paragraph can be applied. Abrahams originally developed this idea to transform a
class of problems with non-commutative matrix kernels into a generalized Khrapkov
form (Khrapkov 1971a , b; Daniele 1984), and recent applications in elasticity theory
have been given by Abrahams (2002) and Owen & Abrahams (2006). Abrahams &
Wickham (1990a) have presented a method for general Wiener–Hopf matrices

containing exponential phase factors (of which our K̂ is an example), with the
factors being given in terms of the solution of an integral equation.

In many ways the model problems we seek to solve echo the work of Lawrie,
Abrahams & Linton (1993) and Lawrie & Abrahams (1994). These authors considered
the acoustic radiation from two opposed semi-infinite cylinders without flow, in the
cases in which the cylinders overlap and are separated respectively. In the former case
(analogous to our problem with d < 0) the pole-removal technique is used, while in
the latter case (analogous to our problem with d > 0) an integral equation is derived,
which is then solved approximately by Lawrie & Abrahams (1994) in a large-spacing
limit. Presumably the latter problem could also be solved using the present Padé
method.
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The paper is organized as follows. In § 2 we will present the formulation and formal
solution of the problem for general d in terms of the unknown factorization of the

matrix K̂. In § 3 and § 4 we will present the factorization of K̂ for the buried case
d < 0 and the protruding case d > 0 respectively, in the former case using the pole
removal method directly and in the latter case by first applying a Padé approximation.
An approximate solution for d < 0 is given in § 5, while results for a range of parameter
values are given in § 6. Full expressions for the various matrix factors, together with
the details of the calculation of certain scalar factors, are presented in Appendices.

2. Model problem
2.1. Formulation

We consider the situation shown in figure 1, in which two semi-infinite co-axial
cylinders carry uniform axial flows of different speeds emanating from deep inside the
cylinders, surrounded by an infinite uniform flow moving at a third speed. In what
follows we will non-dimensionalize all lengths by the radius of the outer cylinder,
so that the cylinder radii are a(<1) and 1, speeds by the uniform sound speed of
the outer flow, and densities by the uniform density of the outer flow. In this way,
the uniform flows have non-dimensional velocities M3 in r > 1, M2 in a < r < 1 and
M1 in r < a, where r is the radial coordinate. Similarly the corresponding mean
sound speeds and densities are C−1

j , Dj for j = 1, 2, 3 respectively, with C3 =D3 = 1,
while the local mean Mach number is MjCj . (Note that we use the notation Cj to
denote the reciprocal of the dimensionless sound speed, as done by Munt (1977).)
We suppose that the flow is subsonic everywhere (supersonic mean flows could
be treated, but would require different definitions of various branch cuts in what
follows).

The origin of coordinates is taken to be at the centre of the open face of the outer
cylinder, with the axial x-direction pointing downstream. The open face of the inner
cylinder is displaced by a distance d in the x-direction. In figure 1 the protruding case
d > 0 is shown, but we will also consider the case d < 0 in which the inner cylinder is
buried a distance −d upstream. As we will see, these two cases will require different
analysis.

We will consider an incident acoustic field from upstream, located in either
a � r � 1 and corresponding to noise in the bypass duct from the fan, or in 0 � r � a

and corresponding to noise from the engine core. For the sake of generality the
analysis we present will cover the case of two incident modes of arbitrary amplitudes,
one in each region, from which the case of only one incident mode follows simply
and the case of multi-mode interaction follows by linear superposition. We consider
a single frequency ω throughout (given the choice of normalization this corresponds
to the Helmholtz number based on the outer cylinder radius and the sound speed in
r > 1), and also suppose that the incident (and hence the scattered) field possess a
single azimuthal mode order m. The time and angular dependence of linear unsteady
quantities is therefore expressed in a factor exp(−iωt + imθ), where θ is the polar
angle. The incident field interacts with the ends of the two cylinders and with the
vortex sheets to produce a scattered field. We will denote the velocity potential for
the incident field in the bypass and the core as φb,c

inc(x, r) exp(−iωt + imθ) respectively.
In what follows superfixes b, c will refer to the regions a � r � 1 (bypass) and r � a

(core) respectively. The potential of the total unsteady field, φt (x, r) exp(−iωt + imθ),
can then be written in terms of the scattered potential φ(x, r) exp(−iωt + imθ),
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with

φt =

⎧⎨
⎩

φ (r � 1),
φ + φb

inc (a � r � 1),
φ + φc

inc (0 � r � a).
(2.1)

All of the potentials satisfy the convected form of the Helmholtz equation

C2
j

(
−iω + Mj

∂

∂x

)2

φ = ∇2φ , j = 1, 2, 3, (2.2)

in the corresponding portion of the flow, while the unsteady scattered pressure is
given by

p(x, r) = Dj

[
iωφ − Mj

∂φ

∂x

]
. (2.3)

The corresponding density fluctuation follows from ρ = C2
j p.

Throughout this paper we will take the walls of the cylinders to be rigid, so that
the wall-normal velocity is zero. By considering for the moment each cylinder to be
infinitely long and then taking the axial Fourier transform, defined by

Φ(α, r) =

∫ ∞

−∞
φ(x, r) exp(iαx)dx, (2.4)

of (2.2), it is a straightforward matter to find the incident fields in the form

φb
inc = kb

[
− K′

m

(
γ2

(
αb,−

inc

))
Im

(
γ2

(
αinc

b,−)r)
+ I′

m

(
γ2

(
αb,−

inc

))
Km

(
γ2

(
αb,−

inc

)
r
)]

exp
(

− iαb,−
inc x
)
,

φc
inc = kcIm

(
γ1

(
αc,−

inc

)
r
)
exp
(

− iαc,−
inc x
)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

Here Im and Km are modified Bessel functions of order m, the axial eigenvalue αc,−
inc

corresponds to one of the finite number of downstream-propagating solutions of the
dispersion relation in r � a,

I′
m(γ1(α)a) = 0, (2.6)

where the superfix − indicates that the mode is located in the lower half of the
complex α-plane. Similarly, the axial eigenvalue αb,−

inc corresponds to one of the finite
number of downstream-propagating solutions of the dispersion relation in a � r � 1,

Δ ≡ I′
m(γ2(α)a)K′

m(γ2(α)) − K′
m(γ2(α)a)I′

m(γ2(α)) = 0. (2.7)

The functions γj (α) for j = 1, 2, 3 are defined in the complex α-plane via

γ 2
j (α) = β2

j

[
α − ωCj

1 − MjCj

] [
α +

ωCj

1 + MjCj

]
, (2.8)

where β2
j = 1 − M2

j C
2
j , with branch cuts joining the branch points ±ωCj/(1 ∓ MjCj )

to infinity through the upper and lower half-planes respectively, and with γj (α) real
and positive as α approaches infinity along the positive real axis. In (2.5) the constant
factors kc,b are chosen to be either zero if that incident mode is not being considered,
or so as to scale the amplitude of the mode in some suitable way (typically in this
paper so that the total incident dimensionless power is unity).

Finally, we note in this subsection that the boundary conditions to be satisfied
are that the total normal velocity is zero on all walls, and that the total particle
displacement and the total pressure are continuous across the vortex sheets. At the
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cylinder trailing edges we will impose the full unsteady Kutta condition, Crighton
(1985). This condition ensures that the flow is smooth near the trailing edge; in
particular the unsteady pressure necessarily remains finite, and the vortex sheet
deflection varies in proportion to distance from the edge to the 3/2 power, so that
the vortex sheet remains parallel to the wall at the edge.

We also require all solutions to be causal, and therefore composed of out-going
waves at infinity. The application of causality in problems involving vortex sheets
requires care, and has received a great deal of attention. We mention in particular
here the work of Crighton & Leppington (1974), who obtained a causal solution to
the problem of excitation of a vortex sheet by rotating their temporal inversion in
the complex ω-plane. We will not repeat their arguments here, but note that (with
one exception) we can simply suppose that in our problem ω has a small positive
imaginary part, and that the complex α-plane be divided into the upper and lower
half-planes which overlap in a vanishingly thin strip containing the real axis. Modes
whose wavenumbers are complex for real ω then lie in the corresponding half-plane,
while neutral downstream/upstream modes (on the real α axis for real ω) are assigned
to the upper/lower half-planes respectively. The exception comes from the Kelvin–
Helmholtz instability modes of the vortex sheets, which although having Im(α) > 0 for
real ω must be treated as being in the lower half-α-plane. This latter point ensures that
when the Fourier transform is inverted for x > 0 by closing in the lower half-plane, the
contribution from the Kelvin–Helmholtz mode is picked up as a convective instability.

2.2. Fundamental equation

We now present the formal solution to the problem described in the previous
subsection. The first step is to take the Fourier transform of (2.2) with respect to x.
This leads to a second-order ordinary differential equation in r , and by solving this
equation and imposing regularity conditions on the axis and at infinity, it follows that

Φ(α, r) =

⎧⎨
⎩

AIm(γ1r) (r � a),
BIm(γ2r) + CKm(γ2r) (a � r � 1),
DKm(γ3r) (r � 1),

(2.9)

where A, B, C, D are as yet unknown functions of α.
Turning first to the conditions across r = 1, the rigid wall condition in x < 0 implies

that

∂Φ−

∂r
(α, 1−) =

∂Φ−

∂r
(α, 1+) = 0, (2.10)

while continuity of particle displacement across the vortex sheet in x > 0 implies that

(ω + αM3)
∂Φ+

∂r
(α, 1−) = (ω + αM2)

∂Φ+

∂r
(α, 1+). (2.11)

Here the superfixes ± denote the half-range Fourier transforms along the positive
and negative real x-axes respectively, and imply that the corresponding functions
are analytic in the upper and lower halves of the complex α-plane respectively. The
continuity of total unsteady pressure across the vortex sheet r = 1, x > 0 leads to

(ω + αM3)Φ
+(α, 1+) − D2(ω + αM2)Φ

+(α, 1−) − iM3φ(0, 1+) + iD2M2φ(0, 1−)

= F +
− ≡ f

α − αb,−
inc

, (2.12)
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where now Φ+(α, r) is the half-range Fourier transform of φ(x, r) over x > 0. The
constant f , which arises from the pressure of the incident bypass mode on r = 1−, is

f =
ikbD2

(
ω + αb,−

inc M2

)
γ2

(
αb,−

inc

) . (2.13)

Note that the left-hand side of (2.12) is analytic in the upper half of the α-plane,
a fact confirmed on the right-hand side by the fact that the pole at the incident
wavenumber α = αb,−

inc lies in the lower half-plane.
Turning now to the conditions across r = a, we first note that we can decompose

the full-range Fourier transform by writing

∂Φ

∂r
(α, r) =

∫ ∞

d

∂φ

∂r
exp(iαx)dx +

∫ d

−∞

∂φ

∂r
exp(iαx) dx

= exp(iαd)

∫ ∞

0

∂φ

∂r
exp(iαx ′)dx ′ + exp(iαd)

∫ 0

−∞

∂φ

∂r
exp(iαx ′) dx ′

≡ exp(iαd)

[
∂Φ+

∂r
(α, r) +

∂Φ−

∂r
(α, r)

]
. (2.14)

Note again that the ± superfixes in the last line correspond to functions which
are analytic in the upper and lower halves of the complex α-plane. The hard-wall
condition on r = a, x <d implies

∂Φ−

∂r
(α, a−) =

∂Φ−

∂r
(α, a+) = 0, (2.15)

while the continuity of particle displacement across r = a, x >d gives

(ω + αM2)
∂Φ+

∂r
(α, a−) = (ω + αM1)

∂Φ+

∂r
(α, a+). (2.16)

Finally, the continuity of pressure condition across the vortex sheet r = a, x >d yields

−D2(ω + αM2)Φ
+(α, a+) +D1(ω + αM1)Φ

+(α, a−) + iD2M2φ(d, a+)

− iD1M1φ(d, a−) =
g

α − αb,−
inc

+
h

α − αc,−
inc

≡ G+, (2.17)

where the constants g, h arise from the pressure of the incident bypass and core
modes on r = a and are given by

g = ikbD2

(
ω + αb,−

inc M2

)[
Km

(
γ2

(
αb,−

inc a
))

I′
m

(
γ2

(
αb,−

inc

))
−K′

m

(
γ2

(
αb,−

inc

))
Im

(
γ2

(
αb,−

inc a
))]

exp
(

− iαb,−
inc d
)
,

h = −ikcD1Im

(
γ1

(
αc,−

inc a
))(

ω + αc,−
inc M1

)
exp
(

− iαc,−
inc d
)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.18)

We now substitute equation (2.9) into equations (2.10)–(2.18), and upon eliminating
A, B, C, D and after a great deal of algebra we arrive at the matrix equation

KΦ+
r = F+ + Ψ −. (2.19)

Here the vector Φ+
r = [∂Φ+(α, a+)/∂r, ∂Φ+(α, 1−)/∂r], i.e. the transforms of the

normal velocities on the vortex sheets, and is analytic in the upper half-plane. The
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vector Ψ −, given by(
−D2(ω + αM2)Φ

−(α, a+) + D1(ω + αM1)Φ
−(α, a−) − iD2M2φ(d, a+) + iD1M1φ(d, a−)

(ω + αM3)Φ
−(α, 1+) − D2(ω + αM2)Φ

−(α, 1−) + iM3φ(0, 1+) − iD2M2φ(0, 1−)

)
,

(2.20)

is related to the unsteady scattered pressure jumps across the cylinder walls, and is
analytic in the lower half-plane. Finally, the vector F+ = [G+, F +] is analytic in the
upper half-plane, and is related to the forcing provided by the pressure jump of the
incident field across the cylinder walls. The 2 × 2 matrix K is given by

K =
1

(ω + αM2)Δγ2

(
k11 k12 exp(−iαd)

k21 exp(iαd) k22

)
, (2.21)

where

k12 = −D2(ω + αM2)
2

aγ2

, k21 =
D2(ω + αM2)

2

γ2

,

k11 =
D1(ω + αM1)

2γ2Im(γ1a)Δ

γ1I′
m(γ1a)

+ D2(ω + αM2)
2[Km(γ2a)I′

m(γ2) − Im(γ2a)K′
m(γ2)],

k22 =
(ω + αM3)

2γ2Km(γ3)Δ

γ3K′
m(γ3)

+ D2(ω + αM2)
2[K′

m(γ2a)Im(γ2) − Km(γ2)I
′
m(γ2a)],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)

and Δ has already been defined in (2.7). Note that the dependence of K on the stagger
d occurs only through the exponential phase factors exp(±iαd) in the off-diagonal
elements in (2.21), so that k11, k12, k21, k22 are independent of d .

Equation (2.19) is the fundamental equation to be solved in this paper, and this
will be accomplished using the Wiener–Hopf technique. Before presenting the formal
solution, however, we will first consider the properties of some of the quantities in
(2.21), (2.22) in more detail.

2.3. Various dispersion relations

The functions k11(α) and k22(α) will prove to be very important in our subsequent
calculations. In particular, the equation k11 = 0 corresponds to the dispersion relation
for fluid contained within an infinitely long hard-walled cylinder of radius 1 carrying
mean flow of speed M2 in a � r � 1 and speed M1 in 0 � r � a. This system is
of course relevant to the case of a buried nozzle d < 0 in the region d <x < 0. On
the other hand, the equation k22 = 0 is the dispersion relation for a fluid outside an
infinite rigid cylinder r = a with mean flow of speed M2 in a � r � 1 and speed M3

in 1 � r < ∞. This second system is relevant to the case d > 0 in the region 0<x <d .

In what follows we will be required to factorize the matrix K̂, and invert the factors,
and we will therefore also be concerned with the zeros of the quantity k11k22 − k21k12,
which is proportional to the determinant of K. It is straightforward but tedious to
show that detK is proportional to Δ.

The locations of some of the zeros of Δ, k11 and det(K) in the α-plane are shown
in figure 2. The zeros of Δ are the acoustic modes in the outer cylinder; in figure 2
there is one real mode propagating upstream and one propagating downstream,
i.e. the wavenumbers α = α

b,±
inc respectively, and an infinite number of evanescent

modes which approach infinity along Re(α) = ωC2
2M2/(1 − C2

2M
2
2 ). The function k11
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Figure 2. In the complex α-plane the zeros of k11 (open circle symbols) and the dispersion
function in the outer duct Δ (multiplication symbols). Also plotted are the two sets of
Kelvin–Helmholtz modes of (detK)/Δ (triangle symbols). The parameter values are ω = 15,
m= 4, a = 0.75, M1 = 0.7, M2 = 0.3, M3 = 0 and for a cold jet, i.e. Dj = Cj = 1 for j = 1, 2. (b)
A close-up view of (a), in which is also plotted (solid line) a typical integration contour C (see
Appendix A).

also possesses a finite number of real zeros; in figure 2, two of these real modes
correspond to waves propagating in the downstream direction, and two correspond to
waves propagating upstream. The evanescent modes of k11 = 0 approach infinity along
the vertical asymptotes Re(α) = ωC2

1,2M1,2/1 − C2
1,2M

2
1,2. As well as all these acoustic

modes, k11 possesses a pair of complex-conjugate modes, w0, w
∗
0, which correspond

to the Kelvin–Helmholtz modes of the cylindrical vortex sheet r = a within the duct
r = 1. (In figure 2, w0 = − 25.97 + 10.03i, and is virtually coincident with a mode of
detK.) As already noted, despite its location w0 must be taken to lie in the lower
half-plane.

The function (detK)/Δ possesses two pairs of complex-conjugate roots u0, u
∗
0, v0, v

∗
0

(with in this case v0 = − 25.97 + 10.03i, u0 = − 50.86 + 49.76i). The root v0 can be
associated with the Kelvin–Helmholtz instability of a vortex sheet r = a, and indeed
is indistinguishable from the instability mode w0 of k11, while the root u0 is associated
with the vortex sheet r = 1, and is indistinguishable from the corresponding zero of
k22. The function (detK)/Δ possesses a number of acoustic modes (some of them
real), which have not been plotted here.
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2.4. Formal expressions for the acoustic field

We now present the formal solution of (2.19). We first introduce a new matrix K̂ via

K = K̂D+, where

D+ =

(
(α − v0)(α − v∗

0) 0

0 (α − u0)(α − u∗
0)

)
, (2.23)

and u0, v0 are the Kelvin–Helmholtz instability modes of detK described in the
previous subsection. The reason for explicitly factorizing out the modes in this way
is that it will be much easier to account for the fact that they must all be included
in the lower half of the α-plane. In fact, the matrix D+ has a + superfix to denote
the fact that it is non-singular in the upper half-plane. We proceed by factorizing the

matrix K̂ in the form

K̂−K̂ = K̂+, (2.24)

where the matrices K̂± are analytic, invertible and have algebraic behaviour at
infinity in the upper and lower half-planes respectively. These factors certainly exist
under quite general conditions (see Noble 1988, p. 157 and the references contained
therein), but no factorization method exists for general Wiener–Hopf problems, and
each problem must be approached on a case by case basis. The determination of these
factors for our problem will be described later. Now substituting (2.24) into (2.19)

and premultiplying by K̂− we find that

K̂+D+Φ+
r = K̂−Ψ − + E, (2.25)

where E(α) ≡ K̂− F+.
The term on the left and the first term on the right of (2.25) are analytic in the

upper and lower half-planes respectively. Noting that the singularities in F+(α) occur
only at the two poles α =αb,−

inc , αc,−
inc in the lower half-plane, it is a simple matter to

separate off these two singularities explicitly to write E = E+ + E−, where

E+(α) = K̂−(αb,−
inc

)⎛⎜⎝
g

α − αb,−
inc

f

α − αb,−
inc

⎞
⎟⎠+ K̂−(αc,−

inc

)⎛⎝ h

α − αc,−
inc

0

⎞
⎠ (2.26)

is analytic in the upper half-plane. The vector E−(α) can be obtained by subtracting
(2.26) from the definition of E(α), and is analytic in the lower half-plane. We can
now rearrange (2.25) to arrive at the Wiener–Hopf matrix equation

−E+ + K̂+D+Φ+
r = K̂−Ψ − + E−. (2.27)

Now note that the left-hand side of (2.27) is analytic in the upper half-plane and
the right-hand side is analytic in the lower half-plane. The final step in the analysis
is to consider the behaviour of the terms in (2.27) at infinity. We will show in
Appendix A that in general the elements of K̂+ approach infinity in the upper
half-plane proportionally to α−3/2, while the elements of K̂− approach infinity in the
lower half-plane proportionally to α1/2. Further, the unsteady Kutta condition tells
us that close to the trailing edge the vortex sheet displacement is proportional to
distance from the trailing edge to the power 3/2. The half-range transform of the
continuity of particle displacement across the vortex sheets can then be used to show
that Φ+

r ∼ α−3/2 as α goes to infinity in the upper half-plane. It is a straightforward
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matter to show that E+ ∼ α−1 and E− ∼ α−1/2 at infinity in the corresponding half-
planes. Putting all this together, we see that the left/right-hand sides of (2.27) define
functions which are analytic in the upper/lower halves of the complex α-plane, so
that by analytic continuation we can define an entire function. This entire function
approaches zero at infinity in both the upper and lower half-planes, and by Liouville’s
Theorem it therefore follows that the entire function, and hence both sides of (2.27),
are identically zero. This leads to, for instance,

Φ+
r = (D+)−1(K̂+)−1 E+. (2.28)

From this result the original unknown quantities A, B, C, D in equation (2.9) can be
recovered, and the solution of the problem therefore found.

2.5. Calculation of the far-field acoustic pressure

In this paper we will be mainly concerned with the acoustic far field generated by the
scattering of the incident modes. We therefore consider first the region r � 1, in which
the pressure can be recovered by inverting the corresponding Fourier transform in
(2.9). This leads to

p =
i

2π

∫
C

(ω + M3α)2Φ+
r (α, 1−)Km(γ3r) exp(−iαx)

(ω + M2α)γ3K′
m(γ3)

dα, (2.29)

where Φ+
r (α, 1−) can be taken from the formal solution (2.28). The inversion contour

C is the real axis suitably deformed to lie above/below all modes in the lower/upper
half-plane, as shown in figure 2. Now taking the limit r → ∞, we can use the
large-argument form of Km(γ3r) (Abramowitz & Stegun 1965, p. 378) to yield the
far-field result

p ∼ i√
8π

∫
C

(ω + M3α)2Φ+
r (α, 1−) exp(−Rf )

(ω + M2α)K′
m(γ3)
√

γ 3
3 r

dα, (2.30)

where f (α) = γ3 sin Θ + iα cos Θ , the angle between the downstream x-axis and the
observer location is Θ , and R =

√
r2 + x2 is the observer distance. We now proceed

by using the method of steepest descents: the single saddle point of f (α) is found to
be

αs =

M3ω − ω cos Θ√
1 − M2

3 sin2 Θ

1 − M2
3

; (2.31)

the integration contour C is then deformed onto the steepest descent contour passing
through αs , picking up possible residue contributions from the Kelvin–Helmholtz
modes; and the integral along the steepest descent contour can then be evaluated
asymptotically in the limit R → ∞ to give the final result. The Kelvin–Helmholtz
instability contributes to the hydrodynamic field, while the saddle-point contribution
alone can be identified with the acoustic field in r > 1. We consider just the acoustic
pressure here, which has the far-field form

p ∼ D(Θ)

R
exp

⎡
⎣− iM3ωR cos θ

1 − M2
3

+
iωR

√
1 − M2

3 sin2 Θ

1 − M2
3

⎤
⎦, (2.32)
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where the pressure directivity D(θ) is given by

D(Θ) =
(ω + M3αs)

2Φ+
r (αs, 1−)

2(ω + M2αs)ωK′
m(γ3(αs)) sinΘ

. (2.33)

Note that in (2.33) there is in fact no singularity when sin Θ = 0, because γ3(αs) ∝ sinΘ

and the term in the denominator K′
m(γ3(αs)) ∝ (sinΘ)−m−1 as sin Θ → 0.

2.6. Calculation of the acoustic pressure in the duct

As well as the far-field radiation we will also be interested in the reflected field inside
the bypass duct and jet pipe. Turning first to the bypass duct, a � r � 1, x <min(0, d),
it is easy to show that the scattered potential takes the form

φ = i

∞∑
i=1

[
BiIm

(
γ2

(
αb,+

i

)
r
)

+ CiKm

(
γ2

(
αb,+

i

)
r
)]

exp
(

− iαb,+
i x
)
, (2.34)

where the summation is over all wavenumber solutions αb,+
i of the bypass dispersion

relation (2.7) in the upper half-plane. The coefficients Bi, Ci are given by(
Bi

Ci

)
=

exp
(
iαb,+

i d
)
ri

γ2

(
αb,+

i

) (K′
m

(
γ2

(
αb,+

i

))
− exp
(

− iαb,+
i d
)
K′

m

(
aγ2

(
αb,+

i

))
−I′

m

(
γ2

(
αb,+

i

))
+ exp
(

− iαb,+
i d
)
I′
m

(
aγ2

(
αb,+

i

)) )

× {(D)−1(K̂+)−1 E+}
(
αb,+

i

)
, (2.35)

where ri is the residue of 1/Δ at α = αb,+
i , and the notation {...}(αb,+

i ) indicates that

the whole of the matrix-vector product has been evaluated at α = αb,+
i .

In the jet pipe 0 � r � a, x <d the scattered potential takes the form

φ = i

∞∑
i=1

AiIm

(
γ1

(
αc,+

i

)
r
)
exp
(

− iαc,+
i x
)
, (2.36)

where the summation is over all wavenumber solutions αc,+
i of the jet dispersion

relation (2.6) in the upper half-plane. The coefficients Ai are given by

Ai =
exp
(
iαc,+

i d
)
si

γ2

(
αc,+

i

) {(D)−1(K̂+)−1 E+}1

(
αc,+

i

)
, (2.37)

where si is the residue of 1/I′
m(γ1a) at α =αc,+

i , and the suffix 1 refers to the first
component of the vector.

In due course we will use the results in this subsection to help validate our results
and to make some absolute-level predictions with experimental data.

3. Factorization of K̂ for a buried nozzle
In the buried nozzle configuration d < 0 it turns out that the matrix factorization

of K̂ in the form given by (2.24) can be carried out using the pole removal technique
(Idemen 1979; Abrahams 1987a). We write

K̂± =

(
k̂

±
11 k̂

±
12

k̂
±
21 k̂

±
22

)
. (3.1)
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Equating the 1,1 elements in (2.24) and rearranging then yields

k̂+
11L

+ =
k̂−

11

L− +
k̂−

12k21

k11L− exp(iαd), (3.2)

where the scalar kernel L(α), given by

L = (ω + αM2)γ2Δ(α − v0)(α − v∗
0)/k11, (3.3)

has been factorized in the form L(α) = L+(α)L−(α), with L±(α) analytic and non-
zero and with algebraic behaviour at infinity in the upper and lower halves of the
complex α-plane respectively. We now note that the left-hand side of (3.2) is analytic
in the upper half-plane, but that the right-hand side is not, thanks to the presence of
the factor k21/k11. However, the crucial point now is that k21/k11 is a meromorphic
function, with an infinite number of poles at the zeros of k11. We subtract off the
residue ccontributions at each of these poles lying in the lower half-plane (call them
β−

i for i = 1, 2, ..., but note that in this notation they, and the β+
i which follow, have

a superfix, and are not to be confused with the Prandtl–Glauert factors β1,2,3), and
then rearranging (3.2) we find that

k̂+
11(α)L+(α) −

∞∑
i=1

k̂−
12(β

−
i )Ri exp(iβ−

i d)

L−(β−
i )(α − β−

i )

=
k̂−

11(α)

L− +

{
k̂−

12(α)k21(α)

k11(α)L−(α)
exp(iαd) −

∞∑
i=1

k̂−
12(β

−
i )Ri exp(iβid)

L−(β−
i )(α − β−

i )

}
. (3.4)

Here Ri is the residue of k21/k11 at α = β−
i . We now note that the left of (3.4) is analytic

in the upper half-plane, while the right-hand side is analytic in the lower half-plane.
Note also that since d < 0 the term exp(iαd) on the right decays exponentially in the
lower half-plane, allowing both sides of the equation to have algebraic behaviour at
infinity in the appropriate half-plane. We therefore have an entire function defined in
the whole of the α-plane via (3.4), and application of the extended form of Liouville’s
Theorem then implies that this entire function is a constant. In fact, we have freedom
to choose the value of this constant (corresponding to the non-uniqueness of the
factorization (2.24)), and for definiteness and simplicity we therefore choose the entire
function to be identically unity.

The calculation in the previous paragraph has given us an expression for the
unknown function k̂+

11(α) and a relationship between the unknown functions k̂−
11(α)

and k̂−
12(α), both in terms of the unknown k̂−

12(β
−
i ), and these are given in Appendix B

as equations (B 1) and (B 5). We now derive more such relationships by eliminating
k̂−

11 between the equations resulting from equating the 1,1 and 1,2 elements in (2.24).
After some algebra we arrive at

k̂−
12(α)L̃−(α) +

∞∑
i=1

k̂+
11(β

+
i )Si exp(−iβ+

i d)

L̃+(β+
i )(α − β+

i )
=

k̂+
12(α)

L̃+

(α − u0)(α − u∗
0)

(α − v0)(α − v∗
0)

−
{

k̂+
11(α)k12(α)

k11(α)L̃+(α)
exp(−iαd) −

∞∑
i=1

k̂+
11(β

+
i )Si exp(−iβ+

i d)

L̃+(β+
i )(α − β+

i )

}
. (3.5)

Here

L̃(α) =
k11k22 − k12k21

k11(ω + αM2)γ2Δ(α − v0)(α − v∗
0)

, (3.6)
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and has been factorized in the form L̃(α) = L̃+(α)L̃−(α), with L̃±(α) analytic and
non-zero and with algebraic behaviour at infinity in the upper and lower halves of the
complex α-plane respectively. In (3.5), Si is the residue of k12/k11 at α = β+

i , where the
β+

i for i = 1, 2, . . . are the zeros of k11 in the upper half-plane. Note how the left and
right-hand sides of (3.5) are analytic and possess algebraic behaviour at infinity in the
lower and upper half-planes respectively. Proceeding as in the previous paragraph,
we now set both sides of (3.5) to be unity again, thereby yielding two more equations,
one containing the unknown functions k̂+

11(α) and k̂+
12(α) (see equation (B 2)) and the

second containing the unknown function k̂−
12(α) (see equation (B 6)), both again in

terms of the k̂+
11(β

+
i ).

Another four expressions identical to those described in the previous two paragraphs
can be found by looking at the 2,1 and 2,2 elements in (2.24). Exactly the same
procedure is followed, except that this time we take the entire functions to be 1, −1
respectively (this will ensure that we obtain a linearly independent solution in the
matrix equations which follow). All the factors k̂

±
ij (α) are given in implicit form in

Appendix B. To derive explicit expressions we set α = β+
j in equation (B 1) and α = β−

j

in equation (B 6), leaving us with an infinite set of linear equations relating k̂−
12(β

−
i )

and k̂+
11(β

+
i ). These can be written in the matrix form

∞∑
j=1

(Y − MX−1MT )ijAj = 1 +

∞∑
j=1

(MX−1)ij , i = 1, 2, . . . . , (3.7)

with

Bi = X−1
ii +

∞∑
j=1

(X−1MT )ijAj . (3.8)

Here

Ai =
k̂−

12(β
−
i ) exp(iβ−

i d)Ri

L−(β−
i )

Bi =
k̂+

11(β
+
i ) exp(−iβ+

i d)Si

L̃+(β+
i )

,

X = diag
L+(β+

j )L̃+(β+
j ) exp(iβ+

j d)

Sj

Y = diag
L−(β−

j )L̃−(β−
j ) exp(−iβ−

j d)

Rj

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

and Mij = 1/(β+
j − β−

i ). Note that the Mij are always finite, because the modes β+
j

and β−
i lie in separate half-planes and do not coincide in our problem. The system

(3.7) is truncated to finite dimension and solved using standard routines. (It proves
convenient to work with the first iterate of the system by writing A = A+Y−1 i , where
i is the vector with unit elements, and then solving for A.) The unknown quantities
k̂−

12(β
−
i ) and k̂+

11(β
+
i ) are thereby determined, and can then be substituted directly into

(B 1), (B 6), (B 5), (B 2), so as to yield explicit expressions for four out of the eight
elements in k̂

±
ij . The remaining four elements can be obtained by first setting α = β+

j in
(B 3) and α = β−

j in (B 8). We then have a matrix equation of a form almost identical
to (3.7), except now with the 1 on the right-hand side replaced by −1 (this is why we
chose the two arbitrary constants to be ±1, so as to obtain different solutions to the
two matrix problems). Solving then gives k̂+

21(β
+
i ), k̂−

22(β
−
i ), which are substituted into

(B 3), (B 8), (B 7), (B 4). The factorization (2.24) for d < 0 is thereby complete.
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4. Factorization of K̂ for a protruding nozzle
We now turn to the protruding configuration d > 0 shown in figure 1. As we will

see, the method set out in the previous section for d < 0 needs to be modified in order
for us to be able consider this new case.

We first equate the 1,2 elements in (2.24) to give

k̂+
12M

+(α) =
k̂−

12

M−(α)
+

k̂−
11k12

k22M−(α)
exp(−iαd), (4.1)

where the scalar kernel M(α), given by

M(α) = (ω + αM2)γ2Δ(α − u0)(α − u∗
0)/k22, (4.2)

has been factorized in the form M(α) = M+(α)M−(α), with M±(α) analytic and non-
zero and with algebraic behaviour at infinity in the upper and lower halves of the
complex α-plane respectively.

We now compare (4.1) here with the corresponding equation (3.2) for the buried
case d < 0. One key difference between (4.1) and (3.2) is the presence of the factor
exp(−iαd) in the former as compared to exp (iαd) in the latter. Both these exponentials
decay in the lower half-plane for d > 0 and d < 0 respectively, allowing us to determine
Wiener–Hopf factors from (4.1) and (3.2) which behave algebraically at infinity. A
second key difference between (4.1) and (3.2) is that in (3.2) the term k11 in the
denominator of the second term on the right is a meromorphic function of α,
allowing direct application of the pole removal method. However, in (4.1) the second
term on the right contains the term k22 instead, and it can be shown from (2.22) that
k22 is not meromorphic (in fact it has a logarithmic branch points at the zeros of γ3

thanks to the ratio Km(γ3)/(γ3K
′
m(γ3))). The pole removal method cannot therefore be

used directly for d > 0, since not all the singularities of the second term on the right
of (4.1) are poles. However, progress can be made using the procedure first suggested
by Abrahams, in which a function which is not meromorphic is approximated to
high accuracy by a Padé approximant. The latter, being a quotient of polynomials in
α, is necessarily meromorphic; see Abrahams (2000) for a description of the use of
Padé methods for scalar Wiener–Hopf problems, and Abrahams (2002) and Owen &
Abrahams (2006) for their application in matrix problems.

In order to proceed we first need to approximate the non-meromorphic term

Km(γ3)/(γ3K
′
m(γ3)).

Abrahams advocates the use of the two-point Padé approximant (see Baker & Graves-
Morris 1996, p. 335ff for full details), in which the Padé coefficients are determined
using two points in the complex α-plane, specifically in this case the origin and the
point at infinity. In order to fix the behaviour at infinity it has been found more
effective to consider first the function

F (α) ≡ Km(γ3)I
′
m(γ3)

K′
m(γ3)Im(γ3)

+ 1, (4.3)

rather than working with Km(γ3)/(γ3K
′
m(γ3)) directly. This is because if we

approximate F (α) by an [N − 2, N]† Padé approximant, then the leading-order
behaviour at infinity of the ratio Km(γ3)/K

′
m(γ3) will be captured exactly within the

† That is, the numerator and denominator are polynomials of degree N − 2 and N respectively,
for integer N .
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Padé approximant of F (α). This certainly gives better behaviour for large |α| than
would have been the case had we simply found a one-point Padé approximant of
Km(γ3)/(γ3K

′
m(γ3)) directly.

To proceed with the approximation we first expand the function F (α) as a power
series in γ3(α) about the point γ3(0) up to and including O(γ N

3 ). We then note that
γ3(α) is an even function of the Doppler-shifted complex variable α′ = α − (M3ω/β2

3 ),
and so expanding γ3 as a power series in α′ about α′ = 0 and substituting into our
power series expansion of F (α), yields a new power series for F (α) containing only
even powers of α′ up to and including the O(α′2N ) term. We now use this power series
to uniquely form the [N −2, N] Padé approximant of F (α) as the ratio of polynomials
PN−2(α

′)/QN (α′), so that finally we have that

Km(γ3)

(γ3K′
m(γ3))

≈ Im(γ3)

(γ3I′
m(γ3))

(
QN − PN−2

QN

)
. (4.4)

The right-hand side of (4.4) is now a meromorphic function of α.
The various power series and Padé approximants were calculated using built-in

‘Series’ and ‘Pade’ functions of MATHEMATICA c©. In practice, we determined the
power series expansions of each of the modified Bessel functions in (4.3) separately
to high accuracy (typically each term to 64 decimal places), before recombining these
series and substituting in the expansion of γ3. This approach allowed us to increase
the maximum number of terms calculated, and hence the value of N , within the
limits of available computer memory. The maximum value of N we were then able to
calculate (on a modern desktop PC) was typically N = 40, although smaller values of
N could well be more than adequate for our purposes. An example calculation, with
N = 40, is shown in figure 3. As can be seen, the exact and approximate expressions
for k22 are visually indistinguishable along the inversion contour C, and the maximum
relative error is at most 1.5%.

In our expression for k22, equation (2.22), we now replace the term on the left of
(4.4) by the meromorphic approximation given on the right of (4.4), leading to the
approximation k22 ≈ k

p

22. With this replacement the right-hand side of (4.1) is now a
meromorphic function, and the pole removal method can now be applied exactly as
in the previous section. Specifically, we now rearrange (4.1) to give

k̂+
12(α)M+(α) −

∞∑
i=1

k̂−
11(δ

−
i )Ri exp(−iδ−

i d)

M−(δ−
i )(α − δ−

i )

=
k̂−

12(α)

M−(α)
+

{
k̂−

11(α)k12(α)

k
p

22(α)M−(α)
exp(−iαd) −

∞∑
i=1

k̂−
11(δ

−
i )Ri exp(−iδ−

i d)

M−(δ−
i )(α − δ−

i )

}
, (4.5)

where α = δ−
i for i =1, 2, . . . are the zeros of k

p

22 in the lower half-plane, and Ri is
now the residue of k12/k

p

22 at α = δ−
i . Equation (4.5) is exactly analogous to (3.4),

and we proceed exactly as before by defining an entire function by the left/right of
(4.5) in the upper/lower half-planes, and then taking this entire function to be unity.

This then leads to an expression for the unknown function k̂+
12(α), and a relationship

between the unknown functions k̂−
12(α) and k̂−

11(α), both in terms of the unknown

values k̂−
11(δ

−
i ), i =1, 2, . . . (see equations (C 2) and (C 6)) in Appendix C.

We now equate the 1,1 elements in (2.24), which we use to eliminate k̂−
12(α) in

the expression obtained by equating the 1,2 elements. Replacing k22 by the Padé
approximant, and then removing the poles of the resultingmeromorphic functions,
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Figure 3. Comparison between the exact value of k22 and the Padé approximation k
p
22 along

the contour C (with Re(α) plotted along the horizontal). (a) Re|k22/ exp((1 − a)γ2(α)| (the
exponential factor is included to scale out the exponential growth of k22 at infinity for ease of
comparison), and note that the exact and Padé curves are indistinguishable. (b) The percentage
relative error, 100× |1−k

p
22/k22|. Here ω = 15, m= 10, a = 0.75, M1 = 0.7, M2 = 0.3 and M3 = 0.

yields

k̂−
11(α)M̃−(α) −

∞∑
i=1

k̂+
12(δ

+
i )Si exp(iδ+

i d)

M̃+(δ+
i )(α − δ+

i )
= − k̂+

11(α)

M̃+(α)

(α − v0)(α − v∗
0)

(α − u0)(α − u∗
0)

+

{
k̂+

12(α)k21(α)

k
p

22(α)M̃+(α)
exp(iαd) −

∞∑
i=1

k̂+
12(δ

+
i )Si exp(iδ+

i d)

M̃+(δ+
i )(α − δ+

i )

}
. (4.6)

Here

M̃(α) =
k12k21 − k11k22

k22(ω + αM2)γ2Δ(α − u0)(α − u∗
0)

, (4.7)

and Si is the residue of k21/k
p

22 at δ+
i , where the δ+

i for i = 1, 2, . . . are the zeros of
k

p

22 in the upper half-plane. Exactly as before, the left/right-hand sides of equation
(4.6) define a function which is analytic in the lower/upper half-planes, which by
analytic continuation defines an entire function which we again set to unity. This
yields equations involving k̂−

11(α) and k̂+
11(α) and k̂+

12(α), both in terms of the unknown

k̂+
12(δ

+
i ) (see equations (C 5) and (C 1)).
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So far we have found four equations for the unknown factors, and the remaining
four equations can be found by looking at the 2,2 and 2,1 elements in (2.24). Since
this is done in exactly the same way as described in the previous section, with suitable
modification to account for the use of the Padé approximant, we need not supply
details here but simply collect all eight elements of the matrix factorization together in
Appendix C. These elements are still given in terms of the unknowns sets of coefficients
k̂−

11,21(δ
−
i ) and k̂−

12,22(δ
+
i ), and the algebraic equation which needs to be solved in order

to obtain these unknowns, exactly analogous to (3.7), is also given in Appendix C.
Finally, we note here that when using Padé approximants it is important to take

care when evaluating the approximate matrix factors outside their range of analyticity.

For instance, if one wished to evaluate K̂+ in the lower half-plane, then one should

evaluate K̂−K̂, since the Padé approximation for K̂− is valid in the lower half-plane.

5. An approximation to the sound field for a buried nozzle
The solution presented already for the buried case d < 0 is exact, but a simplified

approximate solution can be derived which sheds light on the scattering processes. An
approximate solution for the buried nozzle configuration has been given by Taylor
et al. (1993), in the low-frequency limit in which the only acoustic modes which
propagate inside the duct are the axisymmetric (i.e. m =0) plane-wave modes. Their
analysis can easily be extended to the more general case in which a spinning mode
propagates inside the duct, and that is what we will present here.

Taylor et al.’s idea is to first consider the scattering of the incident field by the
cylinder edge r = a, x = d in isolation, to yield a finite family of cut-on modes and
a Kelvin–Helmholtz mode associated with the vortex sheet r = a, all propagating
downstream in d <x < 0. These modes are then rescattered by the cylinder edge
r = 1, x = 0, and so radiate to the far field. In this approximation, the multiple
scattering and rescattering by the two edges is ignored, as is the interaction between
the acoustic and hydrodynamic near fields of each edge with the other edge. The
approximation will therefore not be valid when d is comparable to, or smaller than,
a typical axial wavelength, and even then will not be valid in cases where there
are significant reflections of downstream-going modes by the open end x = 0, as
would happen for instance in resonant or near-resonant situations. However, the
big advantage of treating the edge scattering problems separately is that one now
simply solves two scalar Wiener–Hopf problems, which can be done in a standard
way. This is exactly what was undertaken by Taylor et al. at low frequency, and
we therefore do not need to reproduce the full details of our calculation here. For
simplicity, we present results only for the case of the incident mode present in
a � r � 1; incident modes in r � a can easily be included but only complicates the
results.

In the first scalar Wiener–Hopf problem we take the cylinder r = 1 to be doubly
infinite, and then calculate the scattering of the incident field φb

inc by the semi-infinite
cylinder r = a, x ′ < 0 and the vortex sheet r = a, x ′ > 0 where x ′ = x − d . After some
algebra, we find the scalar Wiener–Hopf equation for this problem in the form

Φ+
r (α, a+)(α − v0)(α − v∗

0)

L+(α)
−

L−(αb,−
inc

)
g(

α − αb,−
inc

)
=

g
[
L−(α) − L−(αb,−

inc

)]
α − αb,−

inc

+ D1(ω + αM1)Φ
−(α, a−)L−(α)

− D2(ω + αM2)Φ
−(α, a+)L−(α) + L−(α) {iM1φ(0, a−) − iM2D2φ(0, a+)}. (5.1)
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The notation used in this equation is exactly as used already. We can now proceed
simply by noting that the left/right-hand sides of this equation define functions which
are analytic in the upper/lower halves of the α-plane, to yield an entire function by
analytic continuation. Moreover, using the same arguments as already deployed in
§ 2.4 about the behaviour at infinity, it follows that this entire function is identically
zero, so that now the unknown normal velocity Φ+

r (α, a+) is given from (5.1) and
the scattered field can be found. In particular, we find that the downstream-going
scattered potential in d <x < 0, a < r < 1 is

φ =
∑

i

Ai[−K′
m(γ2(β

−
i ))Im(γ2(β

−
i )r) + I′

m(γ2(β
−
i ))Km(γ2(β

−
i )r)] exp(−iβ−

i x ′), (5.2)

where

Ai =
iL−(αb,−

inc

)
(ω + M2β

−
i )rig

L−(β−
i )
(
β−

i − αb,−
inc

) . (5.3)

Here ri is the residue of 1/k11 at α = β−
i and the summation in (5.2) is over the

Kelvin–Helmholtz mode and the downstream cut-on modes of k11. Equation (5.3)
describes the field only in a � r � 1; a similar expression for the scattered field in
r � a can also be derived but is not required for our present purposes.

In the second scalar Wiener–Hopf problem the cylinder r = a is now ignored, and
the downstream-going waves described by (5.2) are treated as being an incident field
propagating inside the semi-infinite cylinder r =1, x < 0 with a doubly infinite vortex
sheet on r = a. The scalar Wiener–Hopf equation now turns out to be

L̃+(α)(α − v0)(α − v∗
0)Φ

+
r (α, 1−) − iD2

∑
i

Ai exp(iβ−
i d)(ω + M2β

−
i )

γ2(β
−
i )(α − β−

i )L̃−(β−
i )

=
(ω + αM3)Φ

−(α, 1+) + iM3φ(0, 1+) − D2(ω + αM2)Φ
−(α, 1−) − iM2D2φ(0, 1−)

L̃−(α)

+ iD2

∑
i

Ai exp(iβ−
i d)(ω + M2β

−
i )

γ2(β
−
i )(α − β−

i )

[
1

L̃−(α)
− 1

L̃−(β−
i )

]
. (5.4)

Again, the left/right-hand sides are analytic in the upper/lower halves of the α-plane,
and we can argue as before that they describe by analytic continuation an entire
function which is identically zero. The second scattered field is thereby found, and in
particular, we find the quantity Φ+

r (α, 1−) in the form

iD2

L̃+(α)(α − v0)(α − v∗
0)

∑
i

Ai exp(iβ−
i d)(ω + M2β

−
i )

γ2(β
−
i )L̃−(β−

i )(α − β−
i )

, (5.5)

which is to be compared with the more complicated exact result given through (2.28).
The acoustic far field can now be found by applying the method of steepest descents
exactly as was done for the full problem, so that the approximate acoustic pressure is
again given in (2.32), but now with Φ+

r (α, 1−) given explicitly in (5.5). Note that this
second scalar scattering problem has recently been studied in much greater depth by
Samanta & Freund (2008).

In summary, in this simplified model we can see the way in which the single incident
mode is scattered into a series of modes in d � x � 0 by the first edge, and these modes
are in turn scattered into far-field sound at the second edge.
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Figure 4. The locations of the zeros of the [40 : 40] Padé approximation to k22 in the
complex α-plane. Here ω = 15, m= 4, a = 0.75 and the mean flow is zero everywhere.

6. Results
In this section we will present a range of results, first for zero mean flow and then

for non-zero mean flow. We will be concerned with the far-field directivity function
D(Θ), which is given in terms of the matrix Wiener–Hopf solution described in the
previous sections. We will for the most part suppose that the incident field has total
power input of unity, and in what follows we will plot the quantity 20 log10 |D(Θ)| as
the normalized sound pressure level. Throughout we present results for the cold jet
case Cj =Dj = 1.

6.1. No mean flow

In this subsection we take all Mj = 0, but retain the key geometrical ingredient of
non-zero d . With relevance to the protruding case d > 0 we plot in figure 4 the zeros
of the Padé approximation k

p

22. For zero flow it turns out that the exact k22 has no
zeros, but has logarithmic branch points at α = ±ω (= ±15), and interestingly the
Padé approximation, while having no branch cuts, has zeros which lie along lines
joining ±ω to infinity through the upper and lower half-planes, thereby mimicking
the branch cuts. It is important to identify all the relevant zeros of k

p

22, because
for small d the series in equations (C 1)–(C 8) are only slowly convergent and one
must not miss out any Padé zeros which are close to the real axis. This was checked
by using winding-number calculations (Brazier-Smith & Scott 1991) to identify the
number of zeros contained within finite regions of the α-plane, before using Newton
iteration to locate the zeros accurately.

We have validated the zero-flow results in two ways. First, we have computed
the total power radiated as the sum of the power radiated to the far field plus the
power reflected back into the bypass duct and jet pipe (the latter two being given
using the equations presented in § 2.6), and verified that this equals the (unit) input
power to numerical accuracy. Second, we have found excellent agreement between our
analytical results and numerical results from the finite-element code Actran ( c©Free
Field Technologies) computed by Mr Parcelier and Dr Sugimoto of ISVR, University
of Southampton (private communication 2007).

In figure 5 we plot the far-field directivity in the unstaggered case d =0 for a single
incident mode in the bypass duct. For these parameters there are two downstream
cut-on radial modes in the bypass, and we consider the (well cut-on) first radial mode.
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Figure 5. The far-field acoustic pressure for various values of d , with ω = 15, m= 4, a = 0.75
and the mean flow is zero everywhere. The incident field is the first cut-on mode in the bypass
duct. In (a) the case d = 0 is calculated using both the d < 0 and the d > 0 methods, and the
two curves are visually indistinguishable.

The directivity here has been obtained in two ways: by taking the d → 0− limit of the
buried nozzle solution and by taking the d → 0+ limit of the protruding solution. Of
course, these two solutions are derived in different ways, so it is an excellent check of
our results that the curves in figure 5 are visually indistinguishable (in fact, there is a
minute difference between the two cases, fully consistent with the fact that the Padé
solution involves a very small error, as seen in the previous section).

In figure 5 we see the effect of changing the value of d in the protruding
configuration. Notice that the position and amplitude of the peak radiation direction,
here at about 20◦, is rather insensitive to the value of d . This can easily be understood
by considering the incident mode. At high frequency Chapman (1994) has shown that
a duct mode can be represented as a family of rays following piecewise-linear helices.
These helices make an angle θmn with the cylinder axis when projected onto a plane of
constant θ , where m and n refer to the mode azimuthal and radial order respectively.
It follows that the incident axial wavenumber is αb,−

inc = −ω cos θmn. Further, Keith &
Peake (2002) have shown that the peak radiation direction in the far field is close to
Θ = θmn, which is due to the fact that the peak radiation corresponds to the transition
region in the primary diffracted field of the incident mode scattered by the outer
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Figure 6. The far-field acoustic pressure for various values of d , with ω = 15, m= 4, a = 0.75
and the mean flow is zero everywhere. Here the incident mode is the first cut-on mode in the
core.

cylinder edge. The incident mode is of course unaffected by the value of d , explaining
the insensitivity of the results in figure 5 around Θ ≈ 20◦ (note that the frequency
used here is not very high, which perhaps explains the small discrepancy between the
location of the peak direction and the value θmn = 17.8◦ for the parameter values used
in figure 5).

Away from the peak radiation direction in figure 5, and in particular in directions
which are close to the perpendicular to the axis, the field shape is much more sensitive
to the value of d . This is hardly surprising, since observers in these areas receive both
the direct scattered field from the outer lip and the rescattering of that direct field
by the inner lip. Changing the relative phasing of these two sources by changing
their separation will lead to changes in the field shape. As the value of d gets larger,
however, the effect of the rescattering by the inner lip must reduce (since the direct
field from the outer edge decays with distance and is correspondingly weaker by the
time it reaches the inner edge). This can be seen in figure 5, where the field shape for
d =5 is close to the result labelled d = ∞ of Gabard & Astley (2006), who considered
an infinite centrebody. Notice, however, that for the relatively large but finite value
of d = 5 the general shape of the directivity oscillates about the d = ∞ result, which
can still be attributed to the interference between the diffracted field from the outer
and inner lips (the latter of course being absent in the Gabard & Astley solution). In
the standard problem of interference between two identical sources located a distance
D apart, one expects constructive/destructive interference in the far field, with the
angular separation between adjacent interference fringes being O(ωD). Of course, the
sources corresponding to the scattering by the two edges are not identical, and this
is why we see only small oscillations for d = 5 about the d = ∞ result in figure 5.
However, the angular length scale of the oscillations is consistent with this interference
interpretation, and as d → ∞ both the angular separation and the amplitude of the
oscillations decrease to zero.

In figure 6 we consider an incident core mode. As might be expected on simple
geometrical grounds, the field shapes for the values d = 1, 5 are almost identical for
most observer positions, and indeed are almost identical to the radiation pattern
for sound emission from a single cylinder. The d =1, 5 field shapes do differ from
each other, but only over a small portion of observer angle in the far rearward arc,
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Figure 7. Far-field sound pressure levels for an unstaggered nozzle with no mean flow;
comparison of experiments of Plumblee & Dean (1973a , b) (circles m= 1, squares m= 2) with
present theory (lines).

which can be attributed to the blocking effect of the outer lip on the field from the
inner lip. Both d = 1, 5 results are very close to the d = 0 result in the forward arc,
which is also to be expected since in the forward arc the field is dominated by noise
radiated directly from the jet pipe. The position of the main lobe, as noted earlier,
is determined by the incident mode in the core, which in this case has θmn =28.21◦.
Of course, in the rearward arc the shielding effect of the outer cylinder explains why
the d =0 result is significantly lower than the d =1, 5 levels. In the buried nozzle
case d = −1, notice that there are now two lobes in the forward arc. This can be
understood by noting that in this case the single incident core mode is scattered
into three downstream-going cut-on modes in d � x � 0, and that two of these modes
(with θmn = 20.8◦ and θmn = 38.2◦) are now radiating strongly to the far field. We will
return to the issue of the contributions from the various modes in d � x � 0 when we
consider non-zero flow.

Finally in this subsection we attempt to compare some of our predictions with
the experimental results of Plumblee & Dean (1973 b), who considered the radiation
properties of a coaxial duct with d = 0. We consider the zero-flow case presented in
figures 4 and 5 of Plumblee & Dean (1973a), for which a = 0.566, ω = 4.485 and
m = 1, 2 respectively. Plumblee & Dean report both the far-field pressure pattern
and the pressure around the inner rim of the outer cylinder (i.e. on x = 0, r =1−
in our notation). However, it is the amplitude of the incident mode in the duct
which is required as the fundamental input into our theoretical prediction, and this
value is not reported for the experiment. To make an absolute-level comparison we
therefore use equation (2.34) to calculate the pressure on the rim x = 0, r = 1− in the
form of a standing wave whose amplitude is directly proportional to the incident-
mode amplitude. We then choose the incident-mode amplitude (a single number) to
achieve the experimentally measured rim pressure. The predicted far-field pressure is
then completely determined using (2.32), and the results are shown in figure 7. The
agreement is quite satisfactory over the measured angular range −45◦ � Θ � 90◦, with
the general field shape and relative levels captured quite well. Note, however, that
in the experiments the nominally single-mode incident field was polluted with other
incident azimuthal orders, leading to oscillations in the field shape and asymmetry
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Figure 8. Comparison of normalized far-field sound pressure levels for various buried nozzles.
Here M1 = 0.7, M2 = 0.3, M3 = 0, ω = 15, m= 10, a = 0.75 and the incident mode is the single
cut-on downstream mode in the bypass.

about Θ = 0 of amplitude of order 2 dB, which could certainly account for what
discrepancies are seen in figure 7.

6.2. Effects of mean flow

We now turn our attention to the case of non-zero mean flow. One effect of the
presence of the mean shear between the jet, bypass and exterior flows is to refract the
scattered sound so as to shift the location of the lobes in the far field, see for instance
Plumblee & Dean (1973 b). However, we shall concentrate here on a different effect,
which is particular to the staggered nozzle geometry we are studying, and that is the
way in which the Kelvin–Helmholtz instability wave shed from the inner lip in the
buried case (or the outer lip in the protruding case) interacts with the outer lip (or
the inner lip in the protruding case) downstream.

Some results for a series of negative d are shown in figure 8. Notice that the levels
in the rearward arc are significantly lower for d = −0.2, −0.4 than for d = 0. This
indicates that the rearward noise is in part due to scattering from the lip of the inner
cylinder, which is being shielded as the inner cylinder becomes more deeply buried.
However, as d becomes more negative the rearward noise level rises again, and once
d = −0.8 we can see that it has returned to a similar level to the unstaggered case. This
can be understood by noting that the field in d < x < 0 possesses a pole contribution
from the Kelvin–Helmholtz instability mode α = v0 of the jet/bypass shear layer. If
we ignore the presence of the outer cylinder, then it follows that the instability decays
away from r = a (and of course grows downstream), so that, at least close to the edge
of the inner cylinder, the instability wave will grow like

|exp(−γ2(v0)|r − a| − iv0x)|. (6.1)

As pointed out by Gabard & Astley (2006), it follows that the influence
of the instability is felt within a downstream-pointing cone making an angle
tan−1[Im(v0)/Re(γ2(v0))] with the axis. For the parameter values used in figure 8
this angle is 21.44◦. For small values of d this cone will not intersect with the edge
of the outer cylinder, but for d more negative than the critical value −0.637 the
outer edge will lie inside the cone. Once this happens the instability mode can be
significantly scattered into the acoustic field by the outer edge, and as we will see in a
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moment this is why the levels for d = −0.8 in figure 8 have increased in the rearward
arc. As the value of −d increases yet further, the outer edge moves deeper into the
instability-mode cone, and the amplitude of the instability wave as it reaches that
edge is correspondingly greater (see the d = −1.1 levels in figure 8).

At this point we turn to the approximate solution for the buried case given in
§ 5, and results for the cases considered in figure 8 are shown in figure 9. The
approximate method is based on the idea of the incident mode in x <d (which for
these parameters has mode number −6.470) being scattered by the inner cylinder
edge into the instability mode (α = v0) of the shear layer r = a and downstream
cut-on acoustic modes in d <x < 0 (here there are two cut-on acoustic modes, with
wavenumbers −5.79 and 3.47, denoted in figure 9 as mode 1 and mode 2 respectively).
These three modes are then scattered by the edge of the outer cylinder to give the
approximate far-field noise. In figure 9(a) we see that the exact and approximate
solutions are in close agreement. This means that the effect which is absent from
the approximate solution, namely the multiple rescattering of modes travelling up
and down in d � x � 0, is of little importance in this case. The contribution to the
far-field pressure by the scattering of the instability mode is negligible and has not
been plotted. This corresponds to the case in which the outer edge lies outside the
instability-mode cone of influence. Note also in this case that the incident wave is
scattered more efficiently into the acoustic mode labelled ‘1’, which is hardly surprising
since this is the mode whose wavenumber is closer to that of the incident mode.

In figure 9(b) we have d = −0.8, in which case the outer edge lies just inside
the instability-wave cone. The contribution from the instability mode is now more
significant, while the contributions from the two acoustic modes are largely unchanged.
The scattering of the instability mode has a noticeable effect on the total noise in the
rearward arc, since this is where the noise from the scattering of the acoustic modes
is lower. Finally, in figure 9(c) we have d = −1.1, the outer edge lies well inside the
instability-wave cone, and the approximate solution is dominated by the scattering of
the instability wave. The agreement between the approximate and exact solutions is
now very poor, and this shows that the scattering of the large-amplitude instability
wave into upstream-going acoustic modes, and their subsequent interaction with the
edge of the inner cylinder, is an important effect. Even so, our hypothesis of the
increased importance of the instability wave of the inner shear layer is confirmed.

Finally in this section we present in figure 10 results for the protruding case with
flow. Just as with zero flow, notice how the field in the main-beam direction is largely
unaffected as d increases from zero (see figure 5), while the field in the rearward arc
undergoes appreciable modification. The instability wave of the shear layer emanating
from the outer lip has wavenumber u0 = −50.86 + 49.76i with γ2(u0) = 51.96 − 48.64i,
so that the cone of influence for this mode makes an angle 43.76◦ with the axis, and
the critical value of d for which the edge of the inner cylinder lies exactly on this
cone is d =0.26. As we can see, the radiation increases significantly for d =0.35, once
the inner edge is well within the instability-wave cone. It therefore follows that the
scattering of the instability wave can have an appreciable effect on the noise for both
buried and protruding configurations.

7. Concluding remarks
We have presented the analytical solution for the noise radiation from a coaxial

exhaust system carrying mean flow, in which the open end of the inner cylinder is
either buried or protrudes by a finite distance. We believe this is a highly non-trivial
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Figure 9. Far-field pressure directivity for a buried nozzle with mean flow; comparison
between the exact solution and the approximate solution of § 5, together with the various
components making up the approximate solution. On the vertical axis we plot |D(Θ)|,
with the incident field normalized to unit total power. M1 = 0.7, M2 = 0.3, M3 = 0, ω = 15,
m= 10, a =0.75 and the incident mode is the single cut-on downstream mode in the bypass.
(a) d = −0.4, (b) d = −0.8 and (c) d = −1.1. In (a) the contribution of the Kelvin–Helmholtz
(KH) instability mode is negligible and is not plotted.

extension of the important problem solved by Munt (1977), who considered a single
cylinder with mean flow. This has required solution of a matrix Wiener–Hopf problem.
For the buried case this has been solved directly using the well-known pole removal
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Figure 10. Far-field pressure directivity for a protruding nozzle with mean flow; comparison
of normalized far-field sound pressure levels for various protruding nozzles. Here M1 = 0.7,
M2 = 0.3, M3 = 0, ω = 15, m= 10, a = 0.75 and the incident mode is the single cut-on
downstream mode in the bypass.

technique, but in the protruding case it has first required the application of Padé
approximants, Abrahams (1997, 2000), to convert the problem into a form suitable
for the application of the pole removal technique. From a physical point of view,
the reason for the change in character of the solution is clear: one is attempting to
match a waveguide field upstream with an acoustic far field through the intermediate
region of length |d| between the two open ends; in the buried case the field in
this overlap region is composed of plane waves, and is therefore modal, while in
the protruding case the field is allowed to propagate out towards infinity in the
lateral directions. The use of the Padé approximant can be viewed as introducing an
effective ‘waveguide’, in which ‘novel’ wall conditions in some sense mimic the genuine
lateral unboundedness. We can also view our use of Padé approximants as being an
alternative to the integral-equation method of Abrahams & Wickham (1990a) for
factorizing Wiener–Hopf matrices containing exponential phase factors.

A key feature of our solution has been the inclusion of mean shear between the
jet, bypass and exterior. The application of the full Kutta condition determines the
amplitude of the Kelvin–Helmholtz waves launched from the trailing edges, and this
has an effect on the noise levels (for instance, a different radiated sound field would
be obtained in our problem if a so-called ‘no Kutta condition’ solution were adopted,
as seen in the related half-lined centrebody problem of Demir & Rienstra (2006)).
Once launched these instability waves do not influence the far-field sound within the
confines of the linear theory used here, unless some other mechanism is present to
rescatter them into the acoustic field. In the Munt and Gabard & Astley problems no
such mechanism is present, but in our case the presence of two sharp edges means
that the Kelvin–Helmholtz waves launched from the upstream edge can be scattered
into acoustic waves by their interaction with the downstream edge. Because the
instability waves grow in the axial direction but decay in the lateral direction, and are
therefore of appreciable amplitude only within cones emanating from the edge from
which they were shed, it follows that the rescattering will only occur if the two edges
are sufficiently far apart for the second edge to lie within this cone. This effect has
been clearly seen in our solution for both the buried and protruding configurations,
with the noise increasing appreciably once the downstream edge starts to interact
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with the upstream instability wave. The numerical values we have obtained for the
resulting sound levels rely on our model of the shear layer as a vortex sheet, which
of course tends to overestimate the spatial growth rates involved. Before definitive
statements can be made about the likely significance of this effect for a real engine
geometry, further investigation using more realistic shear-layer models are required.
Other effects, such as the inclusion of acoustic lining and the transition from acoustic
near- to far-field behaviour, are also under current consideration. A supersonic jet
could also be modelled, in which the case the branch cuts for the function γ1(α) would
need to be changed so as to join both the branch points to infinity through the lower
half-plane.

The majority of this work was completed while B. V. held a David Crighton
Fellowship in DAMTP, January–June 2005. Mr B. Parcelier, Drs R. Sugimoto &
G. Gabard and Professor J. Astley of ISVR, University of Southampton are gratefully
acknowledged for the provision of Actran data for validation purposes, together with
a number of helpful discussions. Advice from Professor I. D. Abrahams about the
use of his Padé technique is also acknowledged. The authors note that Dr S. Rienstra
has also been working on the buried-nozzle problem.

Appendix A. Scalar factorization of various kernels
As part of the factorization of the Wiener–Hopf matrix we have to complete

the multiplicative factorization of the scalar functions L(α), L̃(α), M(α) and M̃(α).
Consider first L(α) and write

L(α) =

[
(ω + αM2)γ2

D2M
2
2 + D1M

2
1 (β2/β1)

] [
(α − v0)(α − v∗

0)

(α − w0)(α − w∗
0)

]
L(α), (A 1)

where

L(α) ≡
(

D2M
2
2 + D1M

2
1

β2

β1

)
Δ(α − w0)(α − w∗

0)

k11

. (A 2)

The function L(α) has the important properties that it is non-singular at the Kelvin–
Helmholtz wavenumber w0 (and at w∗

0) of k11, and that L(α) → 1 as α → ∞ along the
real axis. The multiplicative factorization L(α) = L+(α)L−(α), with L±(α) analytic
and non-zero in the upper/lower halves of the α-plane, can then be completed using
the standard expressions

L±(α) = exp

[
± 1

2πi

∫
C

logL(ξ )

ξ − α
dξ

]
. (A 3)

The contour C is the real axis deformed to lie above/below all poles and zeros of
L lying in the lower/upper half-plane (but note that C need not be deformed above
α = w0, since the k11 Kelvin–Helmholtz mode has been explicitly factored out of L).
We have used the parametric form for C proposed by Rienstra,

α = t + C − 4iD(t/W)

3 + (t/W)4
, (A 4)

where −∞ < t < ∞, and a typical example is shown in figure 2. The value of C is the
intercept with the real axis, and is chosen by looking at all the neutral modes of
k11,22, Δ and detK and setting C to lie halfway between the largest/smallest neutral
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modes in the lower/upper half-planes. The width and height parameters W and D are
chosen to ensure that C lies above/below all modes in the lower/upper half-planes.

Some care must be taken when evaluating the complex logarithm found in equation
(A 3) and elsewhere. One approach, as adopted by Demir & Rienstra (2006), is to
insert a logarithmic branch cut and then insist that the integration contour C must
be chosen so as to avoid L(ξ ) crossing this branch cut, so that logL(ξ ) → 1 at
both ends of C. We have taken a different approach, however, which is to insist that
the argument of logL(ξ ) varies continuously along the contour C (and therefore
potentially varies outside the range −π < arg[logL(ξ )] < π). It is certainly the case
that |logL(ξ )| → 1 at both ends of C in our method, but there is now the possibility
that arg[logL(ξ )] → ν as ξ → − ∞ and arg[logL(ξ )] → μ as ξ → ∞, with μ, ν non-
zero. If μ �= ν then the integral in (A 3) does not converge. However, this eventuality
has been discussed by Noble (1988, p. 41, example 1.12); the idea is to use (A 3) to
factorize instead the function

L(ξ ) exp(−iμ)
[ξ − τ−](μ−ν)/2π

[ξ − τ+](μ−ν)/2π
, (A 5)

where τ± are suitably chosen complex constants in the upper and lower half-planes
respectively. The additional factors introduced into (A 5) can then be easily factorized
on sight to finally yield the factors of L(α)

The integral in (A 3) can be easily computed numerically by first splitting it into
two semi-infinite integrals over t � 0, sending t to −t in the t < 0 integral, and then
mapping the resulting sum onto a finite interval 0 � s < 1 using the transformation
t = s/(1 − s)2 suggested by Rienstra. Standard quadrature routines can then be used
to evaluate the finite integral.

Having completed the factorization of L(α), the factorization of L(α) can now
proceed in an elementary fashion, and from (A 1) we find

L−(α) =
γ −

2 (α)(
D2M

2
2 + D1M

2
1 (β2/β1)

)1/2
L−(α),

L+(α) =
(ω + αM2)γ

+
2 (α)(

D2M
2
2 + D1M

2
1 (β2/β1)

)1/2

[
(α − v0)(α − v∗

0)

(α − w0)(α − w∗
0)

]
L+(α).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 6)

The factorization γ2(α) = γ +
2 (α)γ −

2 (α), with γ
±
2 (α) analytic and non-zero in the

upper/lower half-planes is a standard result. Note in (A 6) that the factors associated
with the various Kelvin–Helmholtz modes have been put into the plus factor, since
the Kelvin–Helmholtz modes all lie in the (deformed) lower half-plane. Note also that
factor ω + αM2 is also in the plus factor since the zero of L(α) at α = −ω/M2 lies
in the lower half-plane (this latter fact follows from considering ω to have a small
positive imaginary part).

Our definition of L(α) ensures that L±(α) → 1 as α → ∞ in the upper/lower-half-
planes, and it is therefore easy to see from (A 1) that, for M2 �= 0, L+ ∼ α3/2 and
L− ∼ α1/2 as α approaches infinity in the corresponding half-plane. In the special case
M2 = 0, we have L± ∼ α1/2 in the corresponding half-plane.

To factorize L̃(α) we write

L̃(α) = −
[
D2M

2
2 + M2

3 (β2/β3)

(ω + αM2)γ2

] [
(α − u0)(α − u∗

0)

(α − w0)(α − w∗
0)

]
L̃(α), (A 7)
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where

L̃(α) ≡ 1

D2M
2
2 + M2

3 (β2/β3)

[
(α − w0)(α − w∗

0)

(α − u0)(α − u∗
0)(α − v0)(α − v∗

0)

]
k21k12 − k11k22

k11Δ
. (A 8)

We can now proceed to factorize L̃(α) exactly as we did for L(α). It turns out that
for M2 �= 0, L̃+ ∼ α−3/2 and L̃− ∼ α−1/2 as α approaches infinity in the corresponding
half-plane, while for M2 = 0 we have L̃± ∼ α−1/2.

Finally, the multiplicative factorization of M(α) and M̃(α) proceeds in exactly the
same way as it did for L(α) and L̃(α) respectively. It follows that the split factors
M±(α) and M̃±(α) have the same algebraic behaviour at infinity in the appropriate
half-planes as L±(α) and L̃±(α) respectively.

Appendix B. The matrix elements k̂
±
ij for d < 0.

Following the procedure set out in § 3, the eight elements k̂
±
ij have been found as

follows:

k̂+
11(α) =

1

L+(α)
+

∞∑
i=1

k̂−
12(β

−
i )Ri exp(iβ−

i d)

L−(β−
i )L+(α)(α − β−

i )
, (B 1)

k̂+
12(α) =

(α − v0)(α − v∗
0)

(α − u0)(α − u∗
0)

{
L̃+(α) +

exp(−iαd)k12k̂
+
11(α)

k11

−
∞∑

i=1

exp(−iβ+
i d)k̂+

11(β
+
i )SiL̃

+(α)

L̃+(β+
i )(α − β+

i )

}
, (B 2)

k̂+
21(α) =

1

L+(α)
+

∞∑
i=1

k̂−
22(β

−
i )Ri exp(iβ−

i d)

L−(β−
i )L+(α)(α − β−

i )
, (B 3)

k̂+
22(α) =

(α − v0)(α − v∗
0)

(α − u0)(α − u∗
0)

{
−L̃+(α) +

exp(−iαd)k12k̂
+
21(α)

k11

−
∞∑

i=1

exp(−iβ+
i d)k̂+

21(β
+
i )SiL̃

+(α)

L̃+(β+
i )(α − β+

i )

}
, (B 4)

k̂−
11(α) = L−(α) + L−(α)

∞∑
i=1

k̂−
12(β

−
i )Ri exp(iβ−

i d)

L−(β−
i )(α − β−

i )
− k̂−

12(α)k21 exp(iαd)

k11

, (B 5)

k̂−
12(α) =

1

L̃−(α)
−

∞∑
i=1

k̂+
11(β

+
i )Si exp(−iβ+

i d)

L̃+(β+
i )L̃−(α)(α − β+

i )
, (B 6)

k̂−
21(α) = L−(α) + L−(α)

∞∑
i=1

k̂−
22(β

−
i )Ri exp(iβ−

i d)

L−(β−
i )(α − β−

i )
− k̂−

22(α)k21 exp(iαd)

k11

, (B 7)

k̂−
22(α) = − 1

L̃−(α)
−

∞∑
i=1

k̂+
21(β

+
i )Si exp(−iβ+

i d)

L̃+(β+
i )L̃−(α)(α − β+

i )
. (B 8)
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Appendix C. The matrix elements k̂
±
ij for d > 0.

The eight elements of k̂
±
ij for d > 0 are:

k̂+
11(α) =

(α − u0)(α − u∗
0)

(α − v0)(α − v∗
0)

{
−M̃+(α) +

exp(iαd)k21k̂
+
12(α)

k
p

22(α)

−
∞∑

i=1

exp(iδ+
i d)k̂+

12(δ
+
i )SiM̃

+(α)

M̃+(δ+
i )(α − δ+

i )

}
, (C 1)

k̂+
12(α) =

1

M+(α)
+

∞∑
i=1

k̂−
11(δ

−
i )Ri exp(−iδ−

i d)

M−(δ−
i )M+(α)(α − δ−

i )
, (C 2)

k̂+
21(α) =

(α − u0)(α − u∗
0)

(α − v0)(α − v∗
0)

{
M̃+(α) +

exp(iαd)k21k̂
+
22(α)

k
p

22(α)

−
∞∑

i=1

exp(iδ+
i d)k̂+

22(δ
+
i )SiM̃

+(α)

M̃+(δ+
i )(α − δ+

i )

}
, (C 3)

k̂+
22(α) =

1

M+(α)
+

∞∑
i=1

k̂−
21(δ

−
i )Ri exp(−iδ−

i d)

M−(δ−
i )M+(α)(α − δ−

i )
, (C 4)

k̂−
11(α) =

1

M̃−(α)
+

∞∑
i=1

k̂+
12(δ

+
i )Si exp(iδ+

i d)

M̃+(δ+
i )M̃−(α)(α − δ+

i )
, (C 5)

k̂−
12(α) = M−(α) + M−(α)

∞∑
i=1

k̂−
11(δ

−
i )Ri exp(−iδ−

i d)

M−(δ+
i )(α − δ−

i )
− k̂−

11(α)k12 exp(−iαd)

k
p

22(α)
, (C 6)

k̂−
21(α) = − 1

M̃−(α)
+

∞∑
i=1

k̂+
22(δ

−
i )Si exp(iδ+

i d)

M̃+(δ+
i )M̃−(α)(α − δ+

i )
, (C 7)

k̂−
22(α) = M−(α) + M−(α)

∞∑
i=1

k̂−
21(δ

−
i )Ri exp(−iδ−

i d)

M−(δ−
i )(α − δ−

i )
− k̂−

21(α)k12 exp(−iαd)

k
p

22(α)
. (C 8)

The matrix equation to be solved for the unknown k̂−
11(δ

−
i ) and k̂+

12(δ
+
i ) takes the form

∞∑
j=1

(Y + MX−1MT )ijAj = 1 −
∞∑

j=1

(MX−1)ij (i = 1, 2, . . . .) (C 9)

with

Bi = X−1
ii +

∞∑
j=1

(X−1MT )ijAj . (C 10)

Here

Ai =
k̂−

11(δ
−
i ) exp(−iδ−

i d)Ri

M−(δ−
i )

, Bi =
k̂+

12(β
+
i ) exp(iδ+

i d)Si

M̃+(δ+
i )

,

X = diag
M+(δ+

j )M̃+(δ+
j ) exp(−iδ+

j d)

Sj

, Y = diag
M−(δ−

j )M̃−(δ−
j ) exp(iδ−

j d)

Rj

, (C 11)



306 B. Veitch and N. Peake

and M = 1/(δ+
j −δ−

i ). The quantities Ri, Si are now the residues of k12/k
p

22 and k21/k
p

22

at α = δ
∓
i respectively. The matrix equation to be solved for the unknown k̂−

21(δ
−
i ) and

k̂+
22(δ

+
i ) takes the form (C 9) but with the 1 on the right-hand side replaced by −1.
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